

GEOFABRICS CASE STUDY

BUILDING A RAILWAY LINE FROM MELBOURNE DIRECT TO BRISBANE

PRODUCTS USED

Triaxial Geogrid

- A multi-axial geogrid made from punched polypropylene sheets, forming a unique hexagonal structure with triangular apertures that confine and interlock with aggregate for soil stabilisation and ground improvement
- Reduces aggregate layer thickness by up to 50% without compromising performance, lowering excavation and fill costs
- Enhances layer stiffness to allow the use of lower-quality or recycled fill materials, reducing material costs
- Speeds up installation, offering a fast, cost-effective stabilisation solution for roads, working platforms and heavy-vehicle pavements

Similar Product

Geofabrics® Geogrid™ Triaxial

Bidim® Green Non-Woven Geotextile

- Premium non-woven geotextile made with a combination of Australian recycled PET and virgin plastic material
- Used in the construction of roads, railways and embankments where ground is soft and unstable
- Separates soft ground from fill material, providing filtration for drainage, increasing the life span of the road and reducing long-term maintenance costs

PROJECT DESCRIPTION

Inland Rail is a once-in-a-generation project, building a railway line from Melbourne direct to Brisbane through Parkes NSW. It will allow double stacked containers to travel in a transit time of 24 hours or less, competing directly with road transport. This project completes the national freight network between Melbourne and Brisbane via regional Victoria, NSW and Queensland.

5.3 kilometres of new rail was required to be constructed at Parkes to allow a link with the Sydney, Broken Hill and Perth railway lines. The remainder of the project required upgrading 98.4 kilometres of existing rail track, including a full rebuild of the rail tracks, rail formation and supporting structures in the existing rail corridor.

Geofabrics met with the designers on numerous occasions to refine the foundation design of the railway, as construction was required to pass over weak subgrades. Various options were considered including the removal of poor subgrades.

OUR SOLUTION

Lime stabilisation and Bidim A44 were used as a separation layer, while triaxial geogrid acted as a mechanical stabilisation layer under the capping layers.

Bidim A44 and triaxial geogrid can be flexibly deployed to reduce cost and save time compared to digging out soft subgrades and replacing with granular fill.

In total, 120,000 m² of Bidim A44 and 14,250 m² of triaxial geogrid were used in the project. By using products sourced by Geofabrics, the project was constructed on time and within budget.

Visit geofabrics.co or call 1300 60 60 20 (AU)
or geofabrics.co.nz or call 0800 60 60 20 (NZ)

GEOFABRICS®
Sustainable solutions

IMPORTANT NOTICE - DISCLAIMER - The images depicted in the photographs on this page are similar to the Geofabrics' products listed but they are not the same. The information contained in this brochure is general in nature. In particular the content of this brochure does not take account of specific conditions that may be present at your site. For full disclaimer and further information regarding installation visit geofabrics.co/disclaimer
© Copyright held by Geofabrics Australasia Pty Ltd. All rights are reserved and no part of this publication may be copied without prior permission. Published December 2025.

